11,158 research outputs found

    Scintillation observations at medium latitude geomagnetically conjugate stations

    Get PDF
    Scintillation observations at medium latitude geomagnetically conjugate station

    Measurement of a Sign-Changing Two-Gap Superconducting Phase in Electron-Doped Ba(Fe_{1-x}Co_x)_2As_2 Single Crystals using Scanning Tunneling Spectroscopy

    Get PDF
    Scanning tunneling spectroscopic studies of Ba(Fe1−xCox)2As2Ba(Fe_{1-x}Co_x)_2As_2 (x = 0.06, 0.12) single crystals reveal direct evidence for predominantly two-gap superconductivity. These gaps decrease with increasing temperature and vanish above the superconducting transition TcT_c. The two-gap nature and the slightly doping- and energy-dependent quasiparticle scattering interferences near the wave-vectors (±π,0)(\pm \pi, 0) and (0,±π)(0, \pm \pi) are consistent with sign-changing ss-wave superconductivity. The excess zero-bias conductance and the large gap-to-TcT_c ratios suggest dominant unitary impurity scattering.Comment: 4 pages, 4 figures. Paper accepted for publication in Physical Review Letters. Contact author: Nai-Chang Yeh ([email protected]

    Spatial homogeneity and doping dependence of quasiparticle tunneling spectra in cuprate superconductors

    Get PDF
    Scanning tunneling spectroscopy (STS) studies reveal long-range (similar to 100 nm) spatial homogeneity in optimally and underdoped superconducting YBa2Cu3O7-delta (YBCO) single crystals and thin films, and macroscopic spatial modulations in overdoped (Y0.7Ca0.3)BaCu3O7-delta (Ca-YBCO) epitaxial films. In contrast, STS on an optimally doped YBa2(Cu0.9934Zn0.0026Mg0.004)(3)O-6.9 single crystal exhibits strong spatial modulations and suppression of superconductivity over a microscopic scale near the Zn or Mg impurity sites, and the global pairing potential is also reduced relative to that of optimally doped YBCO, suggesting strong pair-breaking effects of the non-magnetic impurities. The spectral characteristics are consistent with d(x2-y2) pairing symmetry for the optimally and underdoped YBCO, and with (d(x2-y2) + s) for the overdoped Ca-YBCO. The doping-dependent pairing symmetry suggests interesting changes in the superconducting ground state, and is consistent with the presence of nodal quasiparticles for all doping levels. The maximum energy gap Delta (d) is non-monotonic with the doping level, while the (2 Delta (d)/k(B)T(c)) ratio increases with decreasing doping. The similarities and contrasts between the spectra of YBCO and of Bi2Sr2CaCu2O8+x are discussed

    Fiber Orientation Estimation Guided by a Deep Network

    Full text link
    Diffusion magnetic resonance imaging (dMRI) is currently the only tool for noninvasively imaging the brain's white matter tracts. The fiber orientation (FO) is a key feature computed from dMRI for fiber tract reconstruction. Because the number of FOs in a voxel is usually small, dictionary-based sparse reconstruction has been used to estimate FOs with a relatively small number of diffusion gradients. However, accurate FO estimation in regions with complex FO configurations in the presence of noise can still be challenging. In this work we explore the use of a deep network for FO estimation in a dictionary-based framework and propose an algorithm named Fiber Orientation Reconstruction guided by a Deep Network (FORDN). FORDN consists of two steps. First, we use a smaller dictionary encoding coarse basis FOs to represent the diffusion signals. To estimate the mixture fractions of the dictionary atoms (and thus coarse FOs), a deep network is designed specifically for solving the sparse reconstruction problem. Here, the smaller dictionary is used to reduce the computational cost of training. Second, the coarse FOs inform the final FO estimation, where a larger dictionary encoding dense basis FOs is used and a weighted l1-norm regularized least squares problem is solved to encourage FOs that are consistent with the network output. FORDN was evaluated and compared with state-of-the-art algorithms that estimate FOs using sparse reconstruction on simulated and real dMRI data, and the results demonstrate the benefit of using a deep network for FO estimation.Comment: A shorter version is accepted by MICCAI 201

    Magnetic phenomena at and near nu =1/2 and 1/4: theory, experiment and interpretation

    Full text link
    I show that the hamiltonian theory of Composite Fermions (CF) is capable of yielding a unified description in fair agreement with recent experiments on polarization P and relaxation rate 1/T_1 in quantum Hall states at filling nu = p/(2ps+1), at and near nu = 1/2 and 1/4, at zero and nonzero temperatures. I show how rotational invariance and two dimensionality can make the underlying interacting theory behave like a free one in a limited context.Comment: Latex 4 pages, 2 figure

    Superconducting Gap and Pseudogap in Iron-Based Layered Superconductor La(O1−x_{1-x}Fx_x)FeAs

    Full text link
    We report high-resolution photoemission spectroscopy of newly-discovered iron-based layered superconductor La(O0.93_{0.93}F0.07_{0.07})FeAs (Tc = 24 K). We found that the superconducting gap shows a marked deviation from the isotropic s-wave symmetry. The estimated gap size at 5 K is 3.6 meV in the s- or axial p-wave case, while it is 4.1 meV in the polar p- or d-wave case. We also found a pseudogap of 15-20 meV above Tc, which is gradually filled-in with increasing temperature and closes at temperature far above Tc similarly to copper-oxide high-temperature superconductors.Comment: 4 pages, 3 figures, J. Phys. Soc. Jpn. Vol. 77, No. 6 (2008), in pres

    Sr2_2VO3_3FeAs: A Nanolayered Bimetallic Iron Pnictide Superconductor

    Full text link
    One of the unifying concepts in the iron-pnictide superconductors, both for the mechanism of magnetic ordering and of unconventional order parameter character, has been the electron and hole Fermi surfaces that are approximately nested. Using the density functional methods that have predicted Fermi surfaces correctly in SrFe2_2P2_2, we find that the recently reported superconducting Sr2_2VO3_3FeAs, with TcT_c=37 K and no apparent competition between magnetism and superconductivity, possesses different Fermi surface geometry and character than previous classes of iron pnictides. The intervening layer (a V bilayer) gives rise to bands that cross the Fermi level. Coupling to the FeAs layer is small except for interaction along the zone boundary, however that coupling degrades the Fermi surface nesting. Sr2_2VO3_3FeAs, with its alternating layers of open shell atoms, deserves further close study that should help to understand the origin of the properties of iron pnictide compounds.Comment: 6 pages and 4 embedded figure

    Measurement of Cosmic-ray Muons and Muon-induced Neutrons in the Aberdeen Tunnel Underground Laboratory

    Get PDF
    We have measured the muon flux and production rate of muon-induced neutrons at a depth of 611 m water equivalent. Our apparatus comprises three layers of crossed plastic scintillator hodoscopes for tracking the incident cosmic-ray muons and 760 L of gadolinium-doped liquid scintillator for producing and detecting neutrons. The vertical muon intensity was measured to be Iμ=(5.7±0.6)×10−6I_{\mu} = (5.7 \pm 0.6) \times 10^{-6} cm−2^{-2}s−1^{-1}sr−1^{-1}. The yield of muon-induced neutrons in the liquid scintillator was determined to be Yn=(1.19±0.08(stat)±0.21(syst))×10−4Y_{n} = (1.19 \pm 0.08 (stat) \pm 0.21 (syst)) \times 10^{-4} neutrons/(μ⋅\mu\cdotg⋅\cdotcm−2^{-2}). A fit to the recently measured neutron yields at different depths gave a mean muon energy dependence of ⟨Eμ⟩0.76±0.03\left\langle E_{\mu} \right\rangle^{0.76 \pm 0.03} for liquid-scintillator targets.Comment: 14 pages, 17 figures, 3 table
    • …
    corecore